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The story of a code is spelled out in codewords. Or, in the case of convolutional 
codes, so it was before the BCJR algorithm. Still, in a sense of the term, BCJR’s 
algorithm turns an entire block of encoded information and its corresponding 
received block of length τ +2, i.e. Y0

 τ+1 in BCJR’s paper, into one long codeword, 
regardless of the code’s minimum distance property. The old yarn still rings true! 

The idea of one long codeword suggests possible simplications to, and thus faster 
decoding using BCJR’s method, given the ramifications of what convolutional 
codewords actually are. 

In a linear, binary block code, codewords are definite fixed length vectors y = x G, 
where x is the finite length information vector and G the code generator matrix. 

But what is a word in convolutional encoder output? If a convolutional encoded 
sequence starts and terminates in a known state, it’s BCJRs’ “maximum” sense of 
a codeword. But this differs from the historical understanding. 

In a linear convolutional code, a “codeword” is a sequence of encoded data that is 
not fixed in length, but instead of length determined by the information sequence 
underlying the encoded codeword and the encoder itself. This length is neither 
arbitrary nor fixed as in block codes. The convention was that a convolutional 
codeword could be defined by its Hamming distance from another codeword of the 
same length. If this sounds odd, it is only because of the subtlety of the meaning of 
a convolutional codeword. 

For any code constraint length K, two encoded symbol sequences originating from 
one (or any) particular encoder state, i.e. from where they depart in their state-to-
state paths* through the trellis to where they come back together at one (or any) 
particular common encoder state, are two codewords of the same length. 

Code linearity** permits the convenience of using a departure from the all-zeros 
(0) state and (a first) convergence of the two paths taken by the two codewords 
back at any common state. Linearity then allows for an additional trick. If one of 
the two codewords is taken to actually be the 0 encoder output word (of the same 
length as the other, later-merging, non-all-zeros codeword), then we consider only 
a convergence back to the 0 state. The two sequences, the 0 encoder output (due to 
0 information) and the non-0 sequence (due to non-0 information) are both 
codewords. The Hamming distance between two such encodings is the codeword 
distance that constrains how many errors can be corrected in an “error burst” over 
that length of code symbols. Since we work only with states, then the shortest 
possible non-zero codeword is the one that leads off with a single non-zero 
information symbol (in binary codes, 1) and then returns to all-zero (binary 0) 
information symbols. The shortest codeword length is then the quotient of the 
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constraint length and the code rate, i.e. K/rc. But is this also the minimum 
distance for all pairs of equal-length codewords output from the encoder? 

We can look at each criteria, the raw information and G, one at a time. First, any 
short sub-sequence of “random” data (and sufficient “scrambling” assures this) 
longer than K will eventually repeat, and then the delay to a (first) repetition is 
the length of a codeword in the linear code sense. It could be a long departure from 
all zeros, but the Poisson probability of not yet reaching K –1 zeros of information 
falls quickly with length. For these sub-sequences longer than K, codeword length 
is either only weakly dependent on or even independent of G. The set of codewords 
forms a distribution of lengths, from K +1 and upward, culminating in a thin tail. 

When the “random” sub-sequence which departs and again converges at the same 
state (e.g., all zeros) is less than or equal to K in length, both the information and 
G strongly or equally determine codeword length. There will be a distribution of 
lengths for this set, and the fact of a distribution denies a definite fixed length. 

Due to distribution, theorists resorted to a description of convolutional codeword 
distance that, pun intended, distanced itself from that of block codes, which were 
already shown inferior in an exponential error rate bounding sense. 

Because of the very distribution of codeword lengths, one can say that the length 
of a codeword is “free,” meaning not confined to a constant value. 

Given any two codewords, i.e. which depart from each other then converge at the 
same state as they departed from, we now have a codeword distance. Each such 
distance is one of the many “free distances” dfree distributed by the code. And since 
any “random” information source will produce sub-sequences fitting both criteria 
above, we have dfree ranging from a minimum value, determined by the shortest 
information sequence differing from K –1 zeros and the length and composition of 
G, up to some maximum value in the tail of the information sequence distribution. 
One could call it a spectrum of dfree lengths. 

The minimum free distance, dfree,min, is the key to the code’s strength. It is nice 
that dfree,min be as large as possible. The dfree,min is almost the only determinant of 
strength for memoryless channels, although some codes might be strong in the 
sense that dfree,min is small but codeword lengths approaching it (from above) are 
few in number. Absent side information and iteration, i.e. when there is but one 
calculation available to determine the most probable information sequence 
corresponding to a corrupted received encoded sequence, a code is only guaranteed 
to correct errors causing a Hamming distance between the sent and received 
encoded sequences of less than dfree,min/2. This is analogous to the dmin/2 error 
correction criteria of an algebraic codeword. A main if not the main difference 
between convolutional and algebraic code strengths of the same code rate is that 
convolutional codes can also correct error patterns in codewords for which dfree > 
dfree,min, whereas block codes fail at once for heavier error patterns. 
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* A path is the sequence of convolutional encoder states through a trellis resulting 
from an input information bit sequence. 

** When a code is linear, i.e. when any codeword can be expressed as the sum of 
two other codewords, then all features of a code can be between pairs of sums of 
codewords. Hence comparisons between any two codewords can be made as if 
comparing one codeword, as a particular sum of two, to the all zeros codeword. 


